
International Journal of Scientific & Engineering Research Volume 10, Issue 6, June-2019                                         749 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

Generalized Control Problems with 
Optimality Conditions under 

Generalized Univexity 
 

L.Venkateswara Reddy 
Professor 

Dept. of IT 
SVEC, Tirupati 

Anju Singh 
Research Scholar 
Dept. of Maths 

Mewar University 
Gangrar, Chittorgarh (Rajasthan) 

anjusingh2410@gmail.com 

Dr. S.P. Pandey 
Professor 

Department of Maths 
Maharshi University of 
Information Technology 

IIM Road, Lucknow 
spandey51@gmail.com 

Abstract: 

In this paper, we introduce generalized multi objective programming 

problems. Further, we will derive optimality condition of Kuhn – Tucker and 

Fritz – John type under generalized univexity conditions.  
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1.  Introduction 

 Convexity and generalized plays an important role in the field of non-linear 

mathematical programming, game theory, control theory and so on. In their works, 

Mond et al., [16] established that the invexity of a given functioned is necessary as 

well as sufficient in its critical points, which were to be global in general as in [16]. 

Further, Aren et al. [2] introduced a class of functional, known as KT- invex and 

established that Kuhn-Tne points, which were to be optimal solutions for the chosen 

control problems. Consequently, Arana et al. [3] generalized these results by 

weakening the conditions on the involved function known as FJ- Invexity. In another 

development. Giorgi [10] discussed many different results and gave many remains 

towards necessary optimality condition of FJ-type of a non linear programming with 

inequality and equality constrains again, Hussain et al., [13] established sufficient FJ-
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optimality conditions when the objective function was pseudo-convex and the 

corresponding constraint functions were quasi convex. In another work, Flores-Bazan 

[9] discussed an alternative-type of Fritz-John optimality conditions. Further, Slimani 

et.al [26] studied a generalized FJ-Condition, which was both necessary as well as 

sufficient for a feasible point under generalized invexity conditions. Subsequently 

Singh et.al [25] considered order relationship between the closed interval in real 

numbers and established both theoretical and practical solution approaches for multi 

objective programming problems by making use of interval valued objective function.  

 Very recently, Pandey and Mishra [18] introduced a new concept called in – 

stationary point for considered non-smooth multi objective semi-infinite mathematical 

programming problem with equilibrium constraints by making use of clarice sub 

differentials and obtained KKT type optimality condition. In the sequel, Pitea et al 

[22, 23, 24] developed some applications to applied sciences by introducing a class of 

multi objective optimization problem under generalized invexity condition [1, 2, 3, 5, 

6, 8, 15, 25]. Also, in a very recent development Padhon et al. [17] introduced control 

problems with generalized invexity and obtained optimality condition of the type 

Kuhn-Tucker at Fritz John. 

 By making use of the above ideas, here we generalize the results of Padhan  

et al [17] by weakening the convexity conditions involved on the objective as well as 

constraint function. 

 Hence, we introduce KT-ρ-(ξ,η,θ) invexity and FJ-ρ-(ξ,η,θ)-invexity because 

such functions have many different applications in control design for autonomous 

vehicles, [12] optimal control of static elastoplasticity [14] electrical power 

production. [24], economy [14] medicine [27] ecology [23] computer integrated mann 

factory Robotics [17] and Wavelet analysis [12]. In section 2, we introduced 

generalized multi objective mathematical control problem and preliminary notation 

and definition. In section 3, we will study optimality conditions.  
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2. Notations and Definitions  

Here, we consider a multi objective control problem (MCP) as follows.  

 (MCP)   H (x, u ) = ( )
a

i
b

f t, x, x, u, u dt∫    

 subject to condition  

 ( ) ( )x a , x b= α = β  

 ( )jg t, x, x, u, u 0≤  ( ) [ ]kh t, x, x, u, u x, t I a, b .= ∈ =   

 Here the interval [ ]I a, b=  is a real one, n nf : z p R R,× × →  

n m K
jg : I R R R× × →  and n m n

kh : I R R R× × →  are continuously differentiable 

functions. The corresponding partial derivatives of f w.r.t. x and t are  

1 2 n
t x

1 2 n

f f f ff : , f , ........
t x x x

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

 

1 2 n
u

1 2 m

f f ff , ,....................,
u u u

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 

 Similarly, the corresponding partial derivatives of constraint function gj and hk 

can be defined and denoted by gt, gu, gk at ht, hx, hu and X is represent the state of 

piece wise smooth state functions x : I = (a, b) →  Rn such that x (a) = α and ( )x b = β  

which is equipped with required norm .
∞

= + xx x D
α  Consequently, γ  is the 

space of piecewise continuous control functions [ ] mu : I a, b R ,= →  Further, the 

corresponds feasible solution of the multi objective control problem (MCP) lies in the 

university set, which is defined as: 

( ) ( ) ( ) ( ) [ ]{ }1 j kK x X : y Y : x a , x b ,g t, x, x, u, u o,h t, x, x, u, u , I a, b= ∈ ∈ = α = β ≤ ∈         
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The following definition is needed in the sequel in our work.  

Definition 2.1:  

 A point ( ) 1x, u K∈   is know as Kuhn-Tucker point if ∃  piecewise smooth 

functions [ ] K
i : I a, b Rλ = →  and [ ] n

j : I a, b Rµ →  satisfying the following condition. 

( ) ( ) ( )T ji
i

gf t, x, x, u, u t t, x, x, u, u
x x

∂∂
+ λ

∂ ∂
     

( ) ( ) ( )T x
j j

ht t, x, x, u, u t 0
x

∂
+µ +µ =

∂
 

 

( ) ( ) ( )T ji
i

gf t, x, x, u, u t t, x, x, u, u 0
u u

∂∂
+ λ =

∂ ∂
     

( ) ( )T
j jt g t, x, x, u, u 0λ =   

( )j t 0,λ ≥ for all ( )t I a, b ,∈ =  except at the discontinuities. 

 The following definition, which is useful in the sequal from Arana et al. [2, 3] 

Definition 2.2. The problem (MCP) is known as KT-ρ-(ξ-η-θ) univex at the point 

( )0 0x , u K,∈  if for all ( )0, 0x u  ∈K, and for all [ ] K: I a, b eλ = → ,  which satisfier 

( ) ( ) ( )T
1 j 0 0 1t g t, x , u 0, t 0λ = λ ≥  and [ ] n

1 : I a, b Rµ = →  piecewise smooth function, 

∃  differentiable vector point function 

( )T
0 0 1 1t, x, x , u, u , ,η λ µ  and ( )T

1 0 0 1 1t, x, x , u, u , ,λ λ µ  

and a corresponding  vector point function 

( )1 0 0 1 1t, x, x , u, u , ,θ λ µ  with respective  

( ) 2
1 1 0 0 1 1t, x, x , u, u , ,ρ θ λ µ   
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10, R≥ ρ ∈  such that, 

( ) ( ) ( ){ }0 0b x,u H x,u H x ,u− ⇒  

( ) ( ) ( )
b

T ji
0 0 0 0 1 0 0 0 0

a

gf t, x , x , u , u t t, x , x , u , u
x x

 ∂  ∂
+ λ  ∂ ∂  

∫    

 

( ) ( ) ( ) ( )
b

T j Ti k
0 0 0 0 1 0 0 0 0 1 0 0 0 0

a

gf ht, x , x , u , u t t, x , x , u , u t, x , x , u , u
x x x

 ∂  ∂ ∂
+ λ +µ  ∂ ∂ ∂  

∫      

 

( ) ( )T T
1 0 0 0 0t t, x , x , u , u−µ η    

( ) ( ) ( ) ( )jT Ti k
0 0 0 0 1 0 0 0 0 1 0 0 0 0

gf ht, x , x , u , u t, x , x , u , u t t, x , x , u , u
u u u

∂ ∂ ∂
+ + λ +µ ∂ ∂ ∂ 

       

( ) 2
1 1 0 0 1 1t, x , x, y , y, , 0.+ρ θ λ µ <   

The problem (MCP) is known to be KT-ρ1-(ξ1, 1 1,µ )η  invex it if is true for all 

( )0 0 1x , y K .∈  

3.  Results 

 The following optimality conditions are generalized from of different of 

results available in the literature.  

Theorem 3.1: 

 If (MCP) is KT-ρ1-(ξ1, 1 1,µ )η  univex, then all Kuhn-Tucker point, and 

optimal solutions for (MCP). 

Proof: Suppose that (MCP) is KT-ρ1-(ξ1, 1 1,µ )η -invex.  

Let ( )0 0x , y  be a Kuhn-Tucker point, then [ ] K
1 : I a, b R∃∂ = →  and 

( ) n
1 : I a, b Rµ = →  satisfying the optimality conditions (4) to (7).  
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Consider  

( ) ( ) ( ) ( ) ( )
b

jT Ti k
0 0 0 0 1 0 0 0 0 1 0 0 0 0

a

gf ht, x , x , u , u t t, x , x , u , u t t, x , x , u , u
x x x

 ∂  ∂ ∂
+ λ +µ  ∂ ∂ ∂  

∫      

 

( ) ( )T T
1 0 0 1 1t t, x, x , y, y , ,−µ η λ µ  

( ) ( ) ( )jTi
0 0 1 1 1 0 0 1 1

gf t, x, x , y, y , , t t, x, x , y, y , ,
x x

∂ ∂
+ λ µ + λ λ µ ∂ ∂ 

 

( ) ( )T k
1 0 0 1 1

ht t, x, x , y, y , ,
x

∂
+µ λ µ

∂
 

( ) 2
1 1 0 0 1 1t, x, x , y, y , ,+ρ θ λ µ  

Since the problem (MCP) is ( )1 1 1 1KT , ,−ρ − ξ η θ  univexity, by 

definition, we obtain  

b ( ) ( ) ( )( ) ( ) 1b x,u H x,u H x,u 0, x,u K .− ≥ ∀ ∈   

Hence, ( )x,u   is also an optimal solution for the problem (MCP) 

Hence proved. � 

 The above conditions are not only sufficient but necessary also in some 

cases.  

Theorem 3.2. All the KT-Points are optimal solutions for the problems (MCP), 

then the problem (MCP) is ( )1 1 1 1KT invex.−ρ − ξ −η −θ −  
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Proof: 

Suppose ( )o o 1x , y K∈ is a KT-Point, ∃ a piecewise smooth functions 

[ ] K
1 a, b Rλ = →  and [ ] n

1µ : I a, b R= → ∋  the KT-necessary are satisfied. 

Since, ( )o o 1x , u K∀ ∈  and the KT-points are optimal then by definition, we have 

( ) ( ) ( )( )o o o ob x , y H x , y H x, y 0− ≥   

This result can be proved by using contradiction. 

Let us assume that eh problem (MCP) is not  

( )1 1 1 1KT invex.−ρ − ξ −η −θ −  

Then  

( ) ( ) ( )
b

T ji

a

gf t, x, x, u, u t t, x, x, u, u
x x

∂ ∂ + λ ∂ ∂
∫      

( ) ( )T khµ t t, x, x, u, u
u

∂
+

∂
  ( ) ( ) ( )TT T

1 1 1 1t, x, x, u, u, ,µ µ t t, x, x, u, u, ,µη λ − η λ     

 ( ) ( ) ( )T ji gf t, x, x, u, u t t, x, x, u, u
u u

∂ ∂
+ + λ ∂ ∂ 

     

 ( ) ( ) ( )T k
1 1 1

hµ t t, x, x, u, u t, x, x, u, u, ,µ
u

∂ + ξ λ ∂  
     

 ( ) 2
1 1 1t, x, x, u, u, ,µ 0+ρ θ λ ≥    

 ( ) ( ) ( )( )o o o ob x , y H x , y H x, y 0⇒ − >   

 which is a contradiction to our hypothesis. 

 Hence proved. � 
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Conclusions  

 In this paper we derived generalized KKT- optimality conditions and 

duality theorems with respective to generalized KT-ρ-(ξ,η,θ) invexity. These 

results are generalizations of S.K. Padhan et al., [17]. 
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